Assays

What is an Assay?
15 Assays visible to you, out of a total of 15

Biomass, leaf number and gas exchange data for Col0 (WT), prr7prr9, and lsf1, compiled from four studies: L&H1-3 and the 'no GA' controls of Gibberellins 1.

Biomass (fresh mass, dry mass), leaf numbers, leaf area, gas exchange and 12 metabolites in Col0 (WT), prr7prr9, and pgm at days 29 and 35, presented in the preprint/publication, with most data also for Col and lhycca1 at days 21/22/23, not analysed further.

We suggest that the lower carbon assimilation rate measured in lhycca1 (see gas exchange data) might allow a calibirated simulation in the FMv2 model in future to incorporate the indirect effects of nightly carbon starvation in this genotype ...

Biomass, leaf number and metabolites in Col0 (WT), prr7, prr7prr9, and lsf1. Metabolite data from plants after 28 days of growth were analysed most (27 days 'end of night', 28 days 'end of day' and 'end of night'). The data file also includes data from 21 days of growth ('end of day' and 'end of night'), which is useful for comparison to early-flowering plants not tested here, such as the lhycca1 double mutant, that flower before 28 days, altering their physiology.

This is the SimileXML for the Salazar2009_FloweringPhotoperiod model in PlaSMo. It corresponds to Model 3 in the publication of Salazar et al 2009. The Simile version of this model is also attached here. Instructions to run the Photoperiodism Model in Simile 1.       Save all the files into the same folder. 2.       Copy and paste the attached ‘lightfunction.pl’ file in the following folder:            Program File > Simile6.0 (or other software version)> Functions 3.       Download the ...

This is the SimileXML for the Salazar model linked to the T6P/TPS pathway (Wahl et al. Science 2013). The Simile version of this model and the parameter file are also attached here. Time series data of T6P and FT mRNA for Col wild type and tps1 mutant from Fig. 1 in Wahl et al were used to re-optimise Bco, KCO, kT6P and vT6P (which replaces VCO). Note: This set of parameter values has only been optimised and tested for a 16:8 light:dark cycle, and the initial values in the Simile model are for ...

This is part of the GreenLab Functional-Structural Plant Model for Arabidopsis published in Christophe et al 2008. This model was re-factored, to facilitate the integration in the Chew et al Framework Model, and it cannot be run as a standalone model.  Related PublicationsAngélique Christophe A E, Véronique Letort B, Irène Hummel A, Paul-Henry Cournède B, Philippe de Reffye C, Jérémie Lecœur (2008). A model-based analysis of the dynamics of carbon balance at the whole-plant level in Arabidopsis ...

This is the Framework Model (Chew et al, PNAS 2014; http://www.pnas.org/content/early/2014/08/27/1410238111) that links the following: 1. Arabidopsis leaf carbohydrate model (Rasse and Tocquin) - Carbon Dynamic Model 2. Part of the Christophe et al 2008 Functional-Structural Plant Model 3. Chew et al 2012 Photothermal Model 4. Salazar et al 2009 Photoperiodism Model   To run the model in Simile, please download the Evaluation Edition of the software from http://www.simulistics.com/products/simile.php ...

This is a photothermal model for Arabidopsis that predicts flowering time, published in Chew et al (2012). It is an improved version of the model in Wilczek et al (Science 2009). A Simile version of the model is attached. Instructions to run the Photothermal Model in Simile 1.       Download the Simile file attached or import the XML into Simile:            a.       File > Import > XML Model Description 2.       To run the model:            a.       Model > Run or click on the ‘Play’ ...

Data for Figure 2I-2K in Chew et al. PNAS 2014. Experimental conditions: ∼21.3 °C; 12:12-h light/dark cycle; light intensity, 110 μmol·m−2·s−1;mean daytime CO2 level, 375 ppm. The error bars show the SEs of five plants Further detail on the experimental conditions is contained in the public record on the BioDare resource, link to follow

Data for Figure 3G and Supplementary Figure 4, including gas exchange measurements and photo of the experimental setup. The 'Summary' sheets in the XLSX files often include published graphs. Simulation data are included from FMv1.

These data were acquired in a separate experiment from the biomass, in March 2013. Replication of the earlier biomass study was imperfect, as some plants became a little dry when watering was controlled to reduce moss growth. Sufficient plants grew strongly to measure ...

Data for Figure 3A-3F and Supplementary Figures 2, 3, and 6, including leaf number, biomass and leaf areas. Image data for leaf areas are included in a .ZIP archive. The 'Summary' sheets in the XLSX files often include published graphs. Simulation data are included from FMv1. These data were acquired in June 2012. Experimental conditions: ~22C constant temperature; 12:12-h light/dark cycle; light intensity = 130 μmol·m−2·s−1; average daytime CO2 concentration = 375 ppm. 10 plants per genotype per ...

Data for Figures 5D-5F and Supplementary Figure 7B, 7C, including biomass and leaf areas. Image data for leaf areas are included in a .ZIP archive, with two samples as published in 5D. The 'Summary' sheets in the XLSX files include published graphs. Simulation data are included from FMv1. These data were acquired in April 2014, in a separate experiment from the La(er) and Fei-0. Experimental conditions: ∼20.7 °C constant temperature; 12h:12h light/dark cycle; light intensity = 100μmol·m−2·s−1; ...

In future we should split these versions into separate Assays, and link to the four, original component models, when they are imported with the PlaSMo resource into FairdomHub (expected late 2018)

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH