Publications

What is a Publication?
5 Publications visible to you, out of a total of 5

Abstract (Expand)

In (hyper)thermophilic organisms metabolic processes have to be adapted to function optimally at high temperature. We compared the gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate at 30 degrees C and at 70 degrees C. At 30 degrees C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 degrees C, 1,3-bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. When phosphoglycerate kinase was incubated together with glyceraldehyde 3-phosphate dehydrogenase it was possible to convert 3-phosphoglycerate to glyceraldehyde 3-phosphate, both at 30 degrees C and at 70 degrees C, however, at 70 degrees C only low concentrations of product were observed due to thermal instability of glyceraldehyde 3-phosphate. Thus, thermolabile intermediates challenge central metabolic reactions and require special adaptation strategies for life at high temperature.

Authors: T. Kouril, J. J. Eicher, B. Siebers, J. L. Snoep

Date Published: 7th Oct 2017

Publication Type: Not specified

Abstract (Expand)

Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80 degrees C and pH 2-4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70 degrees C and 80 degrees C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80 degrees C than at 70 degrees C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness.

Authors: A. S. Figueiredo, T. Kouril, D. Esser, P. Haferkamp, P. Wieloch, D. Schomburg, P. Ruoff, B. Siebers, J. Schaber

Date Published: 12th Jul 2017

Publication Type: Not specified

Abstract (Expand)

Four enzymes of the gluconeogenic pathway in Sulfolobus solfataricus were purified and kinetically characterized. The enzymes were reconstituted in vitro to quantify the contribution of temperature instability of the pathway intermediates to carbon loss from the system. The reconstituted system, consisting of phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase and the fructose 1,6-bisphosphate aldolase/ phosphatase maintained a constant consumption rate of 3-phosphoglycerate and production of fructose 6-phosphate over a 1 hour period. Cofactors ATP and NADPH were regenerated via pyruvate kinase and glucose dehydrogenase. A mathematical model was constructed on the basis of the kinetics of the purified enzymes and the measured half-life times of the pathway intermediates. The model quantitatively predicted the systems uxes and metabolite concentrations. Relative enzyme concentrations were chosen such that half the carbon in the system was lost due to degradation of the thermolabile intermediates dihydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3 bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency. This article is protected by copyright. All rights reserved.

Authors: , Dominik Esser, Julia Kort, , ,

Date Published: 20th Jul 2013

Publication Type: Not specified

Abstract (Expand)

A quantitative proteomic analysis of the membrane of the archaeon Sulfolobus solfataricus P2 using iTRAQ was successfully demonstrated in this technical note. The estimated number of membrane proteins of this organism is 883 (predicted based on Gravy score), corresponding to 30% of the total number of proteins. Using a modified iTRAQ protocol for membrane protein analysis, of the 284 proteins detected, 246 proteins were identified as membrane proteins, while using an original iTRAQ protocol, 147 proteins were detected with only 133 proteins being identified as membrane proteins. Furthermore, 97.2% of proteins identified in the modified protocol contained more than 2 distinct peptides compared to the original workflow. The successful application of this modified protocol offers a potential technique for quantitatively analyzing membrane-associated proteomes of organisms in the archaeal kingdom. The combination of 3 different iTRAQ experiments resulted in the detection of 395 proteins (>or=2 distinct peptides) of which 373 had predicted membrane properties. Approximately 20% of the quantified proteins were observed to exhibit >or=1.5-fold differential expression at temperatures well below the optimum for growth.

Editor:

Date Published: 4th Dec 2009

Publication Type: Not specified

Abstract (Expand)

Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology ("SulfoSYS")-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the "-omics" approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics.

Authors: , Dominik Esser, , , , , , Julia Reimann, , , Daniela Teichmann, Marleen van Wolferen, , , , , , , , , ,

Date Published: 31st Aug 2009

Publication Type: Not specified

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH