Assays

Biomass weight during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Cellular size and granularity (measured by FACS) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Dynamics of extracellular metabolites (glc, pyr, suc, lac, gly, ac, etoh, fum, mal, cit, including loss of akg, g3p, 2pg, 3pg, r5p, f6p, g6p, 6pg) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

Dynamics of intracellular metabolites (pyr, suc, fum, mal, akg, pep, g3p, 2pg, 3pg, cit, r5p, f6p, g6p, 6pg, ATP, ADP, AMP, UTP, GTP, inosine, NAD+, IMP, UDP, NADP+, CTP, AdenyloSuccinate, NADPH, trehalose) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines,
...

Dynamics of macromolecules (total RNA) during glucose pulse. Glucose pulse was performed in anaerobically growing yeast Saccharomyces cerevisiae in steady state chemostat (D = 0.1 h-1) and transent concentrations of the extra- and intracellular metabolites from central carbon metabolism (e.g. glycolysis, PPP, glycerol, purines, etc) were measured.

The multi-compartmental metabolic network of Arabidopsis thaliana was reconstructed and optimized in order to explain growth stoichiometry of the plant both in light and in dark conditions. Balances and turnover of energy (ATP/ADP) and redox (NAD(P)H/NAD(P)) metabolites as well as proton in different compartments were estimated. The model showed that in light conditions, the plastid ATP balance depended on the relationship between fluxes through photorespiration and photosynthesis including both
...

The dynamic model describes response of yeast metabolic network on metabolic perturbation (i.e. glucose-pulse). One compartmental ODE-based model of yeast anaerobic metabolism includes: glycolysis, pentose phosphate reactions, purine de novo synthesis pathway, purine salvage reactions, redox reactions and biomass growth. The model describes metabolic perturbation of steady state growing cells in chemostat.

Steady state concentrations of extracellular metabolites in yeast Saccharomyces cerevisiae in anaerobic chemostat at D = 0.1 h-1 on minimal medium

experimentally measured extracellular fluxes in yeast Saccharomyces cerevisiae in anaerobic glucose limited chemostat (D=0.1 h-1) on minimal medium

Powered by
Seek new full
(v.1.7.1)
Copyright © 2008 - 2018 The University of Manchester and HITS gGmbH