Publications

What is a Publication?
4 Publications visible to you, out of a total of 4

Abstract (Expand)

Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.

Authors: , , , , , , S. Kunz, , , , , ,

Date Published: 7th May 2014

Publication Type: Not specified

Abstract (Expand)

The respiratory chain of E. coli is branched to allow the cells' flexibility to deal with changing environmental conditions. It consists of the NADH:ubiquinone oxidoreductases NADH dehydrogenase I and II, as well as of three terminal oxidases. They differ with respect to energetic efficiency (proton translocation) and their affinity to the different quinone/quinol species and oxygen. In order to analyze the advantages of the branched electron transport chain over a linear one and to assess how usage of the different terminal oxidases determines growth behavior at varying oxygen concentrations, a set of isogenic mutant strains was created, which lack NADH dehydrogenase I as well as two of the terminal oxidases, resulting in strains with a linear respiratory chain. These strains were analyzed in glucose-limited chemostat experiments with defined oxygen supply, adjusting aerobic, anaerobic and different microaerobic conditions. In contrast to the wild-type strain MG1655, the mutant strains produced acetate even under aerobic conditions. Strain TBE032, lacking NADH dehydrogenase I and expressing cytochrome bd-II as sole terminal oxidase, showed the highest acetate formation rate under aerobic conditions. This supports the idea that cytochrome bd-II terminal oxidase is not able to catalyze the efficient oxidation of the quinol pool at higher oxygen conditions, but is functioning mainly under limiting oxygen conditions. Phosphorylation of ArcA, the regulator of the two-component system ArcBA, besides Fnr the main transcription factor for the response towards different oxygen concentrations, was studied. Its phosphorylation pattern was changed in the mutant strains. Dephosphorylation and therefore inactivation of ArcA started at lower aerobiosis levels than in the wild-type strain. Notably, not only the micro- and aerobic metabolism was affected by the mutations, but also the anaerobic metabolism, where the respiratory chain should not be important.

Editor:

Date Published: 27th Jan 2014

Publication Type: Not specified

Abstract (Expand)

Expression of the catabolic network in Escherichia coli is predominantly regulated, via oxygen availability, by the two-component system ArcBA. It has been shown that the kinase activity of ArcB is controlled by the redox state of two critical pairs of cysteines in dimers of the ArcB sensory kinase. Among the cellular components that control the redox state of these cysteines of ArcB are the quinones from the cytoplasmic membrane of the cell, which function in 'respiratory' electron transfer. This study is an effort to understand how the redox state of the quinone pool(s) is sensed by the cell via the ArcB kinase. We report the relationship between growth, quinone content, ubiquinone redox state, the level of ArcA phosphorylation, and the level of ArcA-dependent gene expression, in a number of mutants of E. coli with specific alterations in their set of quinones, under a range of physiological conditions. Our results provide experimental evidence for a previously formulated hypothesis that not only ubiquinone, but also demethylmenaquinone, can inactivate kinase activity of ArcB. Also, in a mutant strain that only contains demethylmenaquinone, the extent of ArcA phosphorylation can be modulated by the oxygen supply rate, which shows that demethylmenaquinone can also inactivate ArcB in its oxidized form. Furthermore, in batch cultures of a strain that contains ubiquinone as its only quinone species, we observed that the ArcA phosphorylation level closely followed the redox state of the ubiquinone/ubiquinol pool, much more strictly than it does in the wild type strain. Therefore, at low rates of oxygen supply in the wild type strain, the activity of ArcB may be inhibited by demethylmenaquinone, in spite of the fact that the ubiquinones are present in the ubiquinol form.

Authors: P. Sharma, S. Stagge, M. Bekker, K. Bettenbrock, K. J. Hellingwerf

Date Published: 7th Oct 2013

Publication Type: Not specified

Abstract

Not specified

Authors: , S. Frixel, ,

Date Published: 1st Jun 2011

Publication Type: Not specified

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH