v k1*PRODUCT<substrate_i> E*(kcatp*(S1/KmS1)*(S2/KmS2)-kcatm*(P1/KmP1)*(P2/KmP2))/((1+(S1/KmS1))*(1+(S2/KmS2))+(1+(P1/KmP1))*(1+(P2/KmP2))-1) E*(kcatp*(S1/KmS1)*(S2/KmS2)*(S3/KmS3)-kcatm*(P1/KmP1)*(P2/KmP2))/((1+(S1/KmS1))*(1+(S2/KmS2))*(1+(S3/KmS3))+(1+(P1/KmP1))*(1+(P2/KmP2))-1) E*(kcatp*(S1/KmS1)-kcatm*(P1/KmP1)*(P2/KmP1))/((1+(S1/KmS1))+((P1/KmP1)+(P1/KmP1)^2)) E*(kcatp*(S1/KmS1)*(S2/KmS2))/((1+(S1/KmS1))*(1+(S2/KmS2))+(1+(P1/KmP1))*(1+(P2/KmP2))-1) E*(kcatp*(S1/KmS1)^n)/((1+(S1/KmS1)^n)) E*(KmMm/(KmMm+ Mm))*(Mp/(KmMp+ Mp))*(kcatp*(S1/KmS1)*(S2/KmS2))/((1+(S1/KmS1))*(1+(S2/KmS2))+(1+(P1/KmP1))*(1+(P2/KmP2))-1) E*(kcat*(S1/KmS1))/(((S1/KmS1))+(1+(P1/KmP1)) * (1+(P2/KmP2))) E*(kcatp*(S1/KmS1)*(S2/KmS2))/((1+(S1/KmS1))*(1+(S2/KmS2))+(1+(P1/KmP1))*(1+(P2/KmP2)+(P3/KmP2)^2)-1) E*((KmMm^n)/((KmMm^n)+ (Mm^n)))*(Mp/(KmMp+ Mp))*(kcatp*(S1/KmS1)*(S2/KmS2))/((1+(S1/KmS1))*(1+(S2/KmS2))+(1+(P1/KmP1))*(1+(P2/KmP2))-1) E*((FBP/Pi)/((FBP/Pi) + Km_FBPPi))*(kcatp*(S1/KmS1)*(S2/KmS2) )/((1+(S1/KmS1))*(1+(S2/KmS2))+(1+(P1/KmP1))*(1+(P2/KmP2))-1) E * ((Km_trioseP^n) / (Km_trioseP^n + trioseP^n) ) * ( kcatp * ( (pyruvate/Km_pyruvate)^2) * ( ( NADH/Km_NADH)^2) * (ADP/Km_ADP) * (Pi/Km_Pi) )/( ( 1 + (pyruvate/Km_pyruvate) + ( (pyruvate/Km_pyruvate)^2) ) * ( 1 + ( ( NADH/Km_NADH)) + ( ( NADH/Km_NADH)^2) ) * ( 1 + (ADP/Km_ADP) ) * (1 + (Pi/Km_Pi) ) + ( 1 + ( (mixedacid/Km_mixedacid)) + ( (mixedacid/Km_mixedacid)^2) ) * ( 1 + ( ( NAD/Km_NAD) ) + ( ( NAD/Km_NAD)^2 ) ) * ( 1 + ( ATP/Km_ATP) ) - 1)

Model of L. lactis glycolysis, with mixed acid branch (lumped)

<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[glucose input],Reference=InitialValue> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax pts],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E pts],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax pfk],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E pfk],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax pyk],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E pyk],Reference=Value> log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax fba],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E fba],Reference=Value>) log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax gapdh],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E gapdh],Reference=Value>) log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax eno],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E eno],Reference=Value>) log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax ldh],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E ldh],Reference=Value>) <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax nox],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E nox],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax atpase],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E atpase],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax Pi transport],Reference=Value>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E Pi transport],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG FBP],Reference=Value>-2*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG triose-P],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG triose-P],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG NAD],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG Pi],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG BPG],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG NADH],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG BPG],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG ADP],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG 3PGA],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG ATP],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG pyruvate],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG NADH],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG lactate],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG NAD],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG pyruvate],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG CoA],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG formate],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG acetyl-CoA],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG acetyl-CoA],Reference=Value>+2*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG NADH],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG ethanol],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG CoA],Reference=Value>-2*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG NAD],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG acetyl-CoA],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG Pi],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG ADP],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG acetate],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG ATP],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kG CoA],Reference=Value> (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km fba FBP],Reference=Value>)+2*log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km fba triose-P],Reference=Value>))/2 (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km gapdh triose-P],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km gapdh Pi],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km gapdh NAD],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km gapdh BPG],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km gapdh NADH],Reference=Value>))/2 (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km eno BPG],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km eno ADP],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km eno PEP],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km eno ATP],Reference=Value>))/2 (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ldh pyruvate],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ldh NADH],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ldh lactate],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ldh NAD],Reference=Value>))/2 (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km pfl pyruvate],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km pfl CoA],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km pfl formate],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km pfl acetyl-CoA],Reference=Value>))/2 (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km adh acetyl-CoA],Reference=Value>)-2*log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km adh NADH],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km adh ethanol],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km adh CoA],Reference=Value>)+2*log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km adh NAD],Reference=Value>))/2 (-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ack acetyl-CoA],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ack Pi],Reference=Value>)-log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ack ADP],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ack acetate],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ack CoA],Reference=Value>)+log(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Km ack ATP],Reference=Value>))/2 exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV fba],Reference=Value>+0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq fba],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km fba],Reference=Value>) exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV fba],Reference=Value>-0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq fba],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km fba],Reference=Value>) exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV gapdh],Reference=Value>+0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq gapdh],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km gapdh],Reference=Value>) exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV gapdh],Reference=Value>-0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq gapdh],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km gapdh],Reference=Value>) exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV eno],Reference=Value>+0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq eno],Reference=Value>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km eno],Reference=Value>) exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV eno],Reference=Value>-0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq eno],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km eno],Reference=Value>) exp(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kV ldh],Reference=Value>-0.5*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln kEq ldh],Reference=Value>+<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[ln Km ldh],Reference=Value>) <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Dhour],Reference=InitialValue>/3600 <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[D],Reference=Value>*<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[glucose input],Reference=Value> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[Vmax pfl],Reference=InitialValue>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[E pfl],Reference=InitialValue> <CN=Root,Model=Lactis glycolysis chemostat,Vector=Compartments[Extracellular],Vector=Metabolites[mixed acids],Reference=Concentration>/(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[glucose input],Reference=InitialValue>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Compartments[Extracellular],Vector=Metabolites[Glucose],Reference=Concentration>) <CN=Root,Model=Lactis glycolysis chemostat,Vector=Compartments[Extracellular],Vector=Metabolites[lactate],Reference=Concentration>/(<CN=Root,Model=Lactis glycolysis chemostat,Vector=Values[glucose input],Reference=InitialValue>-<CN=Root,Model=Lactis glycolysis chemostat,Vector=Compartments[Extracellular],Vector=Metabolites[Glucose],Reference=Concentration>) <CN=Root,Model=Lactis glycolysis chemostat,Vector=Compartments[Intracellular],Vector=Metabolites[FBP],Reference=Concentration>/<CN=Root,Model=Lactis glycolysis chemostat,Vector=Compartments[Intracellular],Vector=Metabolites[Pi intra],Reference=Concentration> 0 2.709963675000001e+020 3.011070750000001e+019 0 5.359705935000017e+019 6.022141500000001e+019 1.505535375e+022 0 0 0 0 0 0 0 0 6.022141500000008e+017 69.25925925925927 171.4814814814815 360 7.593697297175238 5.206298320398352 4.386138749547456 10.00183229821742 40.74611267266849 176.1103703703704 7.037037037037037 -8.600000000000023 -3.800000000000011 3.300000000000068 10.90000000000003 4.500000000000011 5.999999999999886 1.200000000000046 -1.42019021629919 -3.954231857119018 1.435319838503295 2.385447761257598 2.572083343360389 1.229916506117942 1.743177595001231 111.484716914535 35366.03166181954 1423.010785566223 23.38433756147613 99.56581781369675 64.80991416641173 1029.96495819495 0 0 1481.481481481482 NaN NaN 0 0.027 0.027 0.01189036410355218 0.3426205324400578 0.115275 0.027 0.008089052319405418 0.027 0.01079388225620192 0.027 1.87 4.63 23.61 62.5 9.26 9.720000000000001 178.5 40 1.93 8.93 4.75498 0.4398087425867206 0.19 5e-008 -886.6 -439 -880.4 -539.7000000000001 -474.2 -142.7 -130.4 -124.5 -26.7 -101.9 17.7 -923.6 -422 388.8 -4 -579.6 412 0.01241090596046801 0.148780805754082 0.9549909644844442 0.01568655106884334 0.02570356889673235 0.9291046224904146 6.72207 6.97856 1.7 0.3150965778595312 0.7701979828334049 0.008515134752137738 32.5493352251076 0.04613988002684731 0.04993755608679379 0.0009011606876634343 0.0828186558177508 0.0202146 0.105266 0.5266957877999444 2.516608742690847 100 0.1141274798069496 0.5290728627705745 11.32345769219292 0.355499790568464 0.06446579244244804 1 24 0.05 0.007 0.007 1 0.08 0.008 0.025 0.06 7 7 5 0.1 0.5 2.97848 0.80806 0.06846670000000001 0.5 6.98821 15000 45.94682794265003 0.06384652118267503 0.2257398226408628 0.2508874507595972 0.4713179199049897 15.70892324138182 2 24.27673011791516 5 18.52149076933372 0.08 0.027 25 0.027 0 0.027 0.01 1
Automatically generated report.